On Ruled Surfaces with Pseudo Null Base Curve in Minkowski 3-Space
نویسندگان
چکیده
منابع مشابه
Ruled W - Surfaces in Minkowski 3 - Space
In this paper, we study a spacelike (timelike) ruled W-surface in Minkowski 3-space which satisfies nontrivial relation between elements of the set {K, KII , H, HII}, where (K,H) and (KII , HII) are the Gaussian and mean curvatures of the first and second fundamental forms, respectively. Finally, some examples are constructed and plotted.
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملGeneralized Null 2-Type Surfaces in Minkowski 3-Space
For the mean curvature vector field H and the Laplace operator ∆ of a submanifold in the Minkowski space, a submanifold satisfying the condition ∆H = f H + gC is known as a generalized null 2-type, where f and g are smooth functions, and C is a constant vector. The notion of generalized null 2-type submanifolds is a generalization of null 2-type submanifolds defined by B.-Y. Chen. In this paper...
متن کاملOn Non-developable Ruled Surfaces in Lorentz-minkowski 3-spaces
In this paper, we classify ruled surfaces in Lorentz-Minkowski 3-spaces satisfying some algebraic equations in terms of the second Gaussian curvature, the mean curvature and the Gaussian curvature.
متن کاملOn the evolute offsets of ruled surfaces in Minkowski 3-space
In this paper, we classify evolute offsets of a ruled surface in Minkowski 3-space L with constant Gaussian curvature and mean curvature. As a result, we investigate linear Weingarten evolute offsets of a ruled surface in L .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Geometry
سال: 2016
ISSN: 1307-5624
DOI: 10.36890/iejg.584573